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A paradigm for Hall discharge modeling is presented whereby only the time scale of the lowest-frequency
mode is explicitly resolved. The ability of such a low-frequency model to reproduce with excellent accuracy
the breathing mode is demonstrated through comparisons with a fully time-dependent numerical model. Based
on this formalism, an approximate linearized model is derived which essentially constitutes a one-dimensional
generalization of the classical zero-dimensional predator-prey model. The model highlights the interaction of
standing plasma waves with the transport of neutral species, which involves standing and convective waves of
similar magnitude. It predicts a frequency which is in close agreement with the frequency of the small
perturbation modes observed in simulations. Finally, it is shown that unstable modes are in general strongly
nonlinear and characterized by frequencies obeying a scaling law different from that of linear modes.
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I. INTRODUCTION

Plasma accelerators based on Hall discharges have be-
come a fuel-efficient alternative to conventional rocket en-
gines for various space propulsion applications, ranging from
satellite positioning to deep space probes propulsion. Hall
discharges are typically realized within an annular ceramic
channel in the presence of an applied radial magnetic field
�Fig. 1�. The electric field created between an inner anode
and an external cathode drives electrons into the channel
where they are partially confined by the magnetic field and
ionize the working gas �most commonly xenon� introduced
near the anode. The ions thus created are too heavy to be
magnetized and are accelerated towards the channel exit by
the axial electric field up to velocities on the order of
20 km s−1.

A worldwide surge of interest for this technology has
prompted in the past 10 years a sizable intensification of
theoretical and experimental studies devoted to discharge os-
cillations. Arguably the most ubiquitous among them are
low-frequency �LF� plasma oscillations observable in the
10–30 kHz band. They are characterized by wide ac fluctua-
tions of the discharge current that may at times exceed the
level of the dc current �1�. Although the first reports of this
low-frequency mode date back from the 1970s �2�, its inter-
pretation as an ionization instability has gained wide accep-
tance only in the late 1990s �3,4�. Following the observation
of a back-and-forth motion of the ionization front in numeri-
cal simulations �4,5�, these oscillations are now commonly
referred to as breathing oscillations.

Despite recent attempts to explain low-frequency oscilla-
tions with semiempirical approaches �6,7�, the very simple
predator-prey model suggested by Fife et al. �4� remains the
most favored model to interpret breathing oscillations. Its
intrinsic zero-dimensional �0D� character is difficult, how-

ever, to reconcile with the common view that oscillations
result from a motion of the ionization front �5�. Breathing
oscillations are, on the other hand, reasonably well repro-
duced by most time-dependent �TD� numerical models of
Hall discharges �5,8–13�. Such numerical models rely, how-
ever, on complex physical descriptions that incorporate a
number of unrelated time scales, making it difficult to iden-
tify the root phenomenon responsible for breathing oscilla-
tions. Following Einstein’s dictum that “everything should
be made as simple as possible, but no simpler,” this work
strives to develop a low-frequency formalism which isolates
the essential time-dependent mechanisms of the breathing
mode while preserving a multidimensional and physically
accurate description. This formalism is applied in Sec. II to a
conventional one-dimensional �1D� fluid model of Hall dis-
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charges, and the relevance of the model thus obtained is
assessed with the help of numerical simulations. A small per-
turbation model is subsequently derived in Sec. III, which is
contrasted to the model of Fife et al. The predicted frequency
is compared to the frequency of the linear modes observed in
numerical simulations. Finally, nonlinear modes are briefly
discussed.

II. LOW-FREQUENCY MODEL

A. Motivation and methodology

The breathing mode is known to involve time scales that
are much longer than the characteristic relaxation and flight
times of charged species �14�, but comparable to the flight
time of neutrals. This observation readily leads to the con-
jecture that for low-frequency phenomena, charged species
effectively behave as if they were at any moment in a qua-
sisteady equilibrium with a slowly evolving background of
neutrals. A simplistic interpretation of this postulate might
convey, however, the inaccurate view that the discharge cur-
rent and plasma density reach a steady state whenever the
flow of neutrals is considered frozen. In fact, for a constant
discharge voltage, any sustained excess �depletion� of neu-
trals induces instead a steady temporal growth �decay� of the
discharge current I and of the plasma density n. This behav-
ior follows directly from the fact that the production rate of
charged species is itself proportional to the density of these
species. Having this in mind, we shall argue that a quasi-
steady state for charged species does exist whenever the flow
of neutrals is steady, although not in terms of I and n but in
terms of quantities

�I �
1

I

dI

dt
, n �

n

I
. �1�

Use that shall be made of this hypothesis in the derivation of
a low-frequency one-dimensional fluid model proceeds as
follows. Section II B introduces a conventional fully time-
dependent fluid description of the transport of electrons and
singly charged ions. Changing then variables I and n for
variables �I and n, a quasisteady counterpart of the time-
dependent model is obtained in Sec. II C. Section II D out-
lines in turn a simple time-dependent model for the evolution
of neutrals, which, in conjunction with the quasisteady
model of charged species, eventually leads to a self-
consistent low-frequency model of the discharge. The low-
frequency model is compared in Sec. II E to a fully time-
dependent model by means of numerical simulations.

B. Time-dependent model for charged species

The main features of breathing oscillations highlighted by
simulations appear to be largely independent from the
plasma description �fluid �10�, kinetic �9,15�, or hybrid
�4,5,9�� or from the consideration of physical dimensions
other than the axial one �compare in particular purely axial
�5,9,10�, axial-radial �4,11,12�, and axial-azimuthal �15�
models�. A quasineutral one-dimensional fluid formulation
based on earlier works �10,16� is therefore adopted, aimed at
providing a reasonably accurate picture of the oscillation

mechanism while remaining tractable from the perspective of
mathematical analysis. Plasma magnitudes represent radially
averaged values and the interaction of the plasma with the
lateral walls is modeled by means of effective source terms
�10,17�. The plasma model includes the continuity and axial
momentum equations for both ions and electrons as well as
the azimuthal momentum and energy equations for electrons,

�n

�t
+

�

�x
�nvex� = �Nn − �iwn , �2�

�n

�t
+

�

�x
�nvi� = �Nn − �iwn , �3�

�

�t
�nmivi� +

�

�x
�nmivi

2� = neE + �NnmiV − �iwnmivi, �4�

eE = −
1

n

�

�x
�nTe� − �emevex − �cemeve�, �5�

�

�t
�nve�� +

�

�x
�nvexve�� = �cenvex − �enve�, �6�

�

�t
�3

2
nTe +

1

2
nme�vex

2 + ve�
2 ��

+
�

�x
�5

2
nvexTe +

1

2
nvexme�vex

2 + ve�
2 ��

= − �Nn�i�i − �ewn�w − nvexeE , �7�

where n is the density of electrons and singly charged ions, N
is the density of neutrals, � is the ionization rate, �iw is the
collision frequency for ions impacting the walls, E is the
axial electric field, �ce�eB /me is the electron cyclotron fre-
quency associated with the local magnetic field B, vi is the
axial mean velocity of ions, vex and ve� are, respectively, the
axial and azimuthal mean velocities of electrons, Te is the
temperature of electrons, �i�i is the effective ionization cost,
and me and mi refer to the mass of electrons and ions, re-
spectively. The total momentum-transfer collision frequency
for electrons, �e, the electron-wall and ion-wall collision
transfer frequencies �ew and �iw, and the effective energy loss
at the walls, �w, are given in Appendix A as functions of the
thermal and drift energies of electrons.

The model implicitly assumes that the cross section A of
the discharge column is constant. Subtracting Eq. �2� from
Eq. �3�, it can be noted that the total current through the
channel,

I � eAn�vi − vex� , �8�

is independent of x. Eliminating the electric field using
Ohm’s law �5�, the plasma equations are recast into a system
of equations of the form

�n

�t
+

�

�x
�nvi� = n��N − �iw� = nh1, �9�
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�

�t
�nmivi� +

�

�x
�nmivi

2 + nTe� = nh2, �10�

�

�t
�nve�� +

�

�x
�nvexve�� = nh3, �11�

�

�t
�Te

3/2

n
	 + vex

�

�x
�Te

3/2

n
	 =

1

n
h4. �12�

Integrating Eq. �5�, the discharge potential satisfies

U � 

x=0

x=�

Edx = 

x=0

x=� �−
1

en

��nTe�
�x

+ h5�dx , �13�

where all hk terms �k=1, . . . ,5� are such that �hk /�n=0, i.e.,
are functions of x, N, vi, vex, ve� and Te only. Note that Eq.
�13� implicitly neglects the potential across the anode sheath,
which is much smaller than the discharge voltage and is
found to play no significant role in the analysis to come.

The above equations are complemented by the boundary
conditions

vi�x=0 = −�5

3

Te�x=0

mi
, �14�

ve��x=� =  vex�B

�e + �N − �iw


x=�

, �15�

Te�x=� = const, �16�

where positions x=0 and x=�, respectively, refer to the lo-
cations of the anode sheath edge and of the virtual cathode.
Equation �14� is the Bohm condition for ions at the anode
sheath edge. Boundary condition �15� for ve� derives from
the usual local approximation where inertial terms are ig-
nored �16�. Although the problem could be formally closed
by assuming a constant current source �I=const�, a more
realistic constant voltage boundary condition is assumed,

U = const. �17�

C. Quasisteady model for charged species

The derivation of a quasisteady model based on Eqs.
�3�–�7� requires special care. Indeed, dropping altogether the
time derivatives in these equations fails to provide a consis-
tent model: it is then easily seen that if a steady solution
existed with I= I0 and n=n0, then an infinite number of valid
steady solutions could be generated by simultaneously vary-
ing I and n proportionally to I0 and n0. The root of this
problem lies in the incorrect assumption that I and n reach a
steady state when the density of neutrals, N, is an arbitrary
input: it actually turns out that a well-defined steady state
exists only for the ratio n / I and for the growth rate of I.
Introducing thus variables �I and n defined by Eq. �1� into
Eqs. �8�–�13� and subsequently dropping all explicit time
derivatives, the following quasisteady model is obtained:

eAn�vi − vex� = 1, �18�

�

�x
�nvi� = nh1 − n�I, �19�

�

�x
�nmivi

2 + nTe� = nh2 − nmivi�I, �20�

�

�x
�nvexve�� = nh3 − nve��I, �21�

vex
�

�x
�Te

3/2

n
	 =

1

n
h4 +

Te
3/2

n
�I, �22�

U = 

x=0

x=� �−
1

en

��nTe�
�x

+ h5�dx , �23�

while the expressions of boundary conditions �14�–�17� re-
main unchanged. Unlike the steady-state form of Eqs.
�8�–�17�, the present system is well posed if N�t ,x� is an
arbitrary input. Neither I nor n appears explicitly in the
present model, which shows that the low-frequency solution
is instead determined in terms of �I and n.

D. Transport of neutrals

Following Refs. �5,9�, the dynamics of the neutral gas is
described by a simple advection model, assuming that the
mean axial velocity of neutrals is constant and equal to the
thermal velocity at the gas feed,

V = const. �24�

This assumption could be improved upon by including the
effect of diffusion at the walls, the apparent acceleration in-
herent to the preferential depletion of low-velocity neutrals
by ionization, and the incomplete thermal accommodation of
ions neutralized at the walls. The first two effects may be
responsible for an increase in the mean velocity on the order
of 50% between the gas feed and the end of the ionization
zone �18�. All three phenomena are accounted for in two-
dimensional �2D� hybrid models �8,11,12� and can be effec-
tively introduced into one-dimensional models �10,15�. Since
they do not appear to qualitatively affect the breathing mode
mechanism displayed by models based on simple advection
transport �5�, these effects are neglected in the present study
for the sake of simplicity. The transport of neutrals therefore
reduces to a single continuity equation,

�N

�t
+ V

�N

�x
= − �Nn + �iwn . �25�

The density of neutrals at the anode �x=0� is mainly set
by the flux of injected propellant with a small contribution
from ions recombined on the anode surface, leading to the
boundary condition

N�x=0 =
1

V
� Ṁ

Ami
− �nvi��x=0	 , �26�

where Ṁ is the mass flow rate of propellant injected through
the anode.
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E. Numerical study of the low-frequency model

The fully TD and LF models are readily obtained by cou-
pling the model for neutrals of Sec. II D with, respectively,
the model for charged particles of Sec. II B and its quasi-
steady counterpart of Sec. II C. The details of their numerical
implementation is deferred to Appendix B. These two mod-
els are compared for the case U=180 V and Bmax=22 mT
where the amplitude of oscillations is moderate enough to
clearly distinguish the important features of the breathing
mode; the quantitative agreement between the two models
remains similar, however, notwithstanding the amplitude of
oscillations.

The low-frequency behavior of the TD and LF models
shown on Figs. 2–5 appear almost identical in terms of am-
plitude and frequency and are qualitatively very similar to
earlier results of the literature �5,10�. Consistent with the
simulations of Boeuf et al. and with experimental results
�19�, the breathing mode affects mostly I �Fig. 2� and n
which exhibits a near-standing-wave pattern in phase with I
�Fig. 4�. To a lesser extent, low-frequency oscillations also
affect N, Te, vi, vex, and ve�. The plots of N on Fig. 3 high-
light the characteristic back-and-forth motion of the ioniza-
tion zone described earlier in simulations �5�.

Self-excited oscillations are observed only within a cer-
tain parametric range of the discharge voltage and magnetic
field. It is worth mentioning that no self-excited oscillations
are observed with an ideal current source �I=const�. The
sensitivity of voltage stability thresholds toward various pa-
rameters of the model, in particular toward Bohm-type
anomalous conductivity coefficients, unfortunately prevents
meaningful comparisons with experiments in this regard.
This is congruent with the mitigated success of former at-
tempts at recovering the oscillation regions observed experi-
mentally �10,11,20�. Incidentally, recent numerical simula-
tions suggest that replacing the usual boundary condition U

=const with a more realistic model of power supply strongly
modifies the stability thresholds �21,22�.

For the TD model, Figs 2�a�, 4�a�, and 5�a� show fast
oscillations in the range of several hundreds of kHz super-
imposed on the low-frequency signal. They affect primarily
n, Te, vi, vex, ve� and to a lower extent I, but are too fast to
induce observable changes in the density of neutrals, as wit-
nessed by Fig. 3�a�. The propagation velocity of these oscil-
lations lies very close to the velocity of ions, which leaves
little doubt as to their relationship to the so-called ion transit

FIG. 2. Evolution of the discharge current I. Solutions for U
=180 V and Bmax=22 mT using �a� the fully time-dependent
model and �b� the low-frequency model. Ion transit-time oscilla-
tions can be distinguished on subfigure �a�, superimposed on the
low-frequency signal.

FIG. 3. Evolution of the density of neutrals N in the conditions
of Fig. 2. Solutions for �a� the fully time-dependent model and �b�
the low-frequency model.

FIG. 4. Evolution of the plasma density n in the conditions of
Fig. 2. Solutions for �a� the fully time-dependent model and �b� the
low-frequency model. Note the presence of ion transit-time waves
on subfigure �a�.
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instability �23,24�. These fast oscillations are markedly ab-
sent in the LF model.

In conclusion, the LF approximation can be viewed as a
mean to effectively isolate low-frequency phenomena from
extraneous fast scale phenomena. The conceptual simplicity
of the low-frequency approximation can be fully measured
by noting that the plasma state in the LF model is at any
moment solely determined by the instantaneous values of I
and N, which are the only time-dependent quantities explic-
itly resolved. This is in stark contrast to the TD model where
N, n, vi, ve�, and Te are all governed by time-dependent
equations.

III. THEORETICAL ANALYSIS

A. Functional form of the low-frequency model

By virtue of Eq. �1�, the continuity equation �25� can be
rewritten as

�N

�t
+ V

�N

�x
= − I��Nn − �iwn� . �27�

Since the quasisteady state for charged species
�n,vi ,ve� ,Te , . . .� obtainable from Eqs. �18�–�23� and �14�–
�16� can be fully determined from �I and N and from the
boundary conditions, Eq. �27� can be in turn written formally
as

�N

�t
+ V

�N

�x
= − IS��I,N� , �28�

where S is an operator acting on �I�R and N : �0,��→R; in
other words, ion production at a given time t0 and location x0
is proportional to the instantaneous current I�t0� and to a

term that depends only on the instantaneous growth rate of
the current �I�t0� and on the instantaneous profile N�t0 ,x�
within the whole domain. Likewise, an alternative expression
of the discharge potential equation �23� can be obtained as

U = U��I,N� , �29�

where U is a functional acting on �I�R and N : �0,��→R.
Accounting then for boundary condition U=const, it be-
comes obvious from Eq. �29� that in order to keep the dis-
charge voltage constant, changes in N are accommodated at
any instant by �I�d ln I /dt. This is an important finding that
contradicts the common view that these changes are accom-
modated by I itself.

Equations �28� and �29� constitute a faithful generaliza-
tion of Eqs. �14�–�23� and �25�. In order to close this equa-
tion system, a slight simplification is introduced to Eq. �26�
where the contribution of ions recombined at the anode is
ignored, leading to the boundary condition

N�x=0 = const. �30�

B. Linear modes

1. Theoretical model

Appendix C carries out a linear mode analysis of Eqs.
�28�–�30� by considering small perturbations around the
steady state. The system hence obtained is expanded in terms
of the small parameter

	 =
n0

N0
�31�

with n0 and N0 characteristic values of the steady-state den-
sities; in practice, 	=O�10−2�. For 	→0, the solution of the
linear system raises a simple approximation of the modal
frequency

�0 =�

0

�

��x�
�x�dx , �32�

where ��x� is the effective steady-state ionization frequency,
which is defined in terms of the steady-state density of neu-

trals N̄ as

� �
V

N̄

dN̄

dx
. �33�

Function 
�x� can be viewed as a weighting function for the

impact of a small relative perturbation �N / N̄ from the steady
state on the instantaneous growth rate of I,

1

I

dI

dt
= 


0

�



�N

N̄
dx . �34�

It can be shown that 
 exists and is uniquely defined, but no
analytical expression of 
 can be given in the general case.
For illustration purposes, function 
, obtained from numeri-
cal computations in the conditions of Sec. II E, is plotted
together with � on Fig. 6.

FIG. 5. Evolution of the temperature of electrons Te in the con-
ditions of Fig. 3. Solutions for �a� the fully time-dependent model
and �b� the low-frequency model. Note the presence of ion transit-
time waves on subfigure �a�.
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Let us now examine the orders of magnitudes of the dif-
ferent plasma parameters. Appendix C shows that the angular
frequency of Eq. �32� is of magnitude

�0 =
V

�
O�	−1/2� , �35�

which suggests that it grows with the root of the ratio of gas
density to plasma density. Furthermore, it can be established
that the perturbation of the plasma density is, at the leading
order, a standing wave synchronized with current oscilla-
tions,

�n

n̄
�

�I

Ī
, �36�

which is in agreement with the results of Figs. 2 and 4 and
with earlier studies �5,11�. In contrast, the leading-order per-
turbation of the gas density consists of a standing wave with
a quarter-cycle delay with respect to �I, superimposed on a
traveling wave of the same order of magnitude,

�N � j
�I

�
���x�N̄�x� − ��0�N̄�0�exp�− j�

x

V
	� . �37�

This is consistent with the view that oscillations are accom-
panied by a motion of the ionization front. Finally, the rela-
tive perturbation of N is found to be of lesser magnitude than
that of n or I,

 �N

N̄
 =  �I

Ī
O�	� , �38�

which was clearly apparent in simulations �compare Figs. 2
and 4 with Fig. 3�.

2. Comparison of the predicted frequency with simulations

The linear modes of the low-frequency numerical model
are easily obtained by observing the short-term evolution of
the system when starting simulations from a slightly per-
turbed steady state. The low-frequency model responds then
as a damped or excited harmonic oscillator and � can be
directly inferred by matching the oscillation pattern of I�t� to
the ideal response

I�t� � Ī + � exp�Im���t�cos�Re���t� .

In order to compare to the theoretical frequency predicted by
Eq. �32�, functions � and 
 must be determined numerically
for each operating point investigated. Function � is directly
obtained from Eq. �33�, based on the steady state computed
by the low-frequency model. Function 
 is computed by
taking the steady state as initial condition for the simulation,
with a pulse perturbation of N at position x where 
 is to be
computed; the ensuing current growth rate is then used to
determine 
�x�.

The frequency of the small amplitude modes of the simu-
lation and the prediction of Eq. �32� are compared on Fig. 7
for various values of discharge potential and applied mag-
netic field. The agreement between the two is in general
excellent, which provides strong support for the expansion in
	�n0 /N0 upon which Eq. �32� relies.

3. Predator-prey interpretation of linear modes

It is interesting to compare this one-dimensional treatment
of the breathing mode with the linearized zero-dimensional
predator-prey model of Fife et al. �4�. This latter model ana-
lyzes the temporal cycles of growth and decay of the spa-
tially averaged gas and plasma densities, �N� and �n�. The
model yields marginally stable ionization oscillations of fre-
quency

�pp =� �ṅ�

�N̄��n̄�
, �39�

where �ṅ� is the steady-state ion production rate. In Hall
thrusters, the relation ṅ�NV /� holds and the following or-
der of magnitude can thus be deduced:

FIG. 6. Functions � and 
 determined numerically in the con-
ditions of Figs. 2–5. The oscillations of 
 in the neighborhood of
the sonic point �x�1 cm� are believed to constitute a numerical
artifact.

FIG. 7. Comparison between �a� the frequency of small pertur-
bation modes of the low-frequency simulation and �b� the predic-
tion from the linear approximation �Eq. �32��. Linearly unstable
modes �Im���0� are emphasized with black markers on subfigure
�a�.
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�pp = O�V

�
��N̄�

�n̄�
	 , �40�

which coincides qualitatively with Eq. �35�.
The coincidence of the frequency scaling may appear

somewhat surprising at first, considering the incapacity of
the zero-dimensional model to reproduce the traveling wave
component of �N in Eq. �37�. The reason for this is that, even
though the amplitude of the convective wave is comparable
to that of the standing wave, the overall contribution of the
convective wave to the growth rate of the discharge current
nearly cancels in the integral of Eq. �34� owing to its rela-
tively short wavelength.

C. Nonlinear modes

In both simulations and experiments, the saturated breath-
ing instability appears as a nearly periodic signal �i.e., a
stable limit cycle�. Nonlinearities are thus to be expected,
which will modify the frequency compared to that obtained
with the small perturbation approach. In many cases, peri-
odic solutions can be found even though the mode is linearly
stable, provided that the initial conditions are far enough
from the steady state. This can be observed by comparing the
linearly unstable region in Fig. 7�a� to the regions where
periodic solutions are observed in simulations, shown in Fig.
8. Periodic solutions typically arise from the lower threshold
voltage, but remain alive beyond the upper threshold voltage
for linear stability.

The detailed theory of periodic modes will be the subject
of a separate work; we shall only reproduce here an approxi-

mation of the theoretical frequency of highly nonlinear
modes �25�,

f � V



0

�


�x���x�dx

2

0

�


�x�

0

x

��x��dx�dx

, �41�

where � and 
 are the quantities introduced earlier in Sec.
III B 1. Noting that the inverse of the ratio of integrals de-
fines a characteristic length, it can be expected that the fre-
quency of nonlinear modes scales proportionally to the tran-
sit frequency of neutrals.

The corresponding frequency is compared in Fig. 9 to the
frequency of the periodic solutions obtained in simulations.
We observe that the frequency of saturated modes signifi-
cantly differs from that of linear modes, except close to the
lower stability threshold where oscillation levels are moder-
ate and nonlinearities are presumably small. Just as in the
case of linear modes, the theoretical prediction is in very
good agreement with numerical simulations and correctly
predicts that the frequency of periodic solutions remains
fairly constant when the discharge voltage and magnetic field
are changed. This finding is consistent with the observation
in other simulations that the frequency seems related to the
transit time for neutrals �5�.

IV. CONCLUSION

Using the low-frequency paradigm and an asymptotic ap-
proach based on the parameter 	�n0 /N0, a general picture
of the breathing mode for small perturbations has been out-
lined. It is shown that at the leading order, the plasma density
is a standing wave while the transport of neutrals involves
both a standing wave and a convective wave. However, be-
cause the convective wave changes sign within the 1D do-
main, its instantaneous effect on ionization is dominated by

FIG. 8. Average values �solid lines� and standard deviations
�vertical bars� of the discharge current for the periodic modes of the
low-frequency simulation. The steady-state discharge current is
plotted with a dashed line.

FIG. 9. Comparison between �a� the frequency of periodic solu-
tions of the low-frequency simulation and �b� the prediction of Eq.
�41� for highly nonlinear modes �25�.
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the standing-wave component and the frequency scaling of
linear modes is indeed that suggested by the 0D model of
Fife et al. �4�.

While this scaling is in excellent agreement with the small
perturbation modes found in simulations, it is no longer ad-
equate when it comes to the actual frequency of unstable
modes �i.e., the saturated periodic solutions�. The frequency
of these nonlinear modes is largely independent from the
discharge voltage and magnetic field and is lower than that of
linear modes. Instead, it appears to scale proportionally to
the transit frequency of neutrals, as suggested by Boeuf and
Garrigues �5�. A theory of such nonlinear modes based on the
low-frequency paradigm shall be developed in a separate
work �25�.
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APPENDIX A: PARAMETERS OF THE SIMULATION

The effective frequency for ion recombination at the
walls, the frequency for momentum transfer of electrons at
the walls, the radial sheath potential, and net electron energy
loss at the walls are given by a simplified theory of the radial
sheath and presheath �10,26�,

�iw = �4

3

1

Rc2 − Rc1
�Te

mi

for x � �c

0 for x � �c
� , �A1�

�ew =
�iw

1 − �
, �A2�

�w =
Te

e
log�� mi

2�me
�1 − ��� , �A3�

�w = 2Te +
1

2
me�vex

2 + ve�
2 � + �1 − ��e�w, �A4�

where in our simulations, �c=2.5 cm is the length of the
channel, Rc1=3 cm and Rc2=5 cm are the inner and outer
channel radii, and � is the effective electron secondary emis-
sion yield from the walls. Assuming a linear dependence of
the secondary emission to the energy of impacting electrons
and taking into account a possible space charge saturation of
the sheath for a xenon plasma �27�, the expression for the
effective secondary emission yield reads

� = min�2Te

	�
,0.986	 , �A5�

where the energy corresponding to a unity yield is set to 	�

=50 eV, which lies within the typical range for boron nitride
based insulators.

The total momentum-transfer frequency for electrons is in
turn

�e = ��m�N + �B�ce + �ew, �A6�

where ��m�=2.5�10−13 m3 s−1 is the assumed momentum
transfer rate for electron-neutral collisions in xenon and �B
=1 /160 stands for the coefficient of Bohm-type electron dif-
fusion.

The single ionization cost for xenon is set to �i
=12.1 eV and the effective ionization cost factor to �i=3.
The ionization rate is approximated as a function of the total
energy of electrons by the empirical formula

� = �0� E
�i
	1/4

exp�−
2�i

E 	 �A7�

with E� 3
2Te+ 1

2me�vex
2 +ve�

2 � and �0=1.8�10−13 m3 s−1,
which reasonably fits experimental data �28� assuming a
shifted Maxwellian distribution with mean velocity compo-
nents �vex ,ve��.

The working gas is xenon, injected with mass flow rate

Ṁ =5 mg s−1 and velocity V=200 m s−1. The applied volt-
age in all simulations is U=220 V. The profile of the ap-
plied radial magnetic field is given by a Gaussian curve,

B�x� = Bmax exp�− � x − �c

�B
	2� �A8�

with �B=1.25 cm and Bmax=22 mT in the nominal case.
The virtual cathode plane is located beyond the channel exit
at a distance �=3.5 cm from the anode. The temperature of
electrons in the cathode plane is set to Te �x=�=5 eV.

APPENDIX B: NUMERICAL METHODS

For the time-dependent model, Eqs. �25� and �12� for neu-
trals and electron temperature are integrated independently
from other equations, with time-explicit upwind schemes.
The remaining transport equations for charge species
�9�–�11� form a conservative hyperbolic system solved with
the Harten-Lax-van Leer �HLL� scheme �29�, using the ve-
locity bounds proposed by Davis �30�. Time integration is
explicit, except for the source term of Eq. �6� where the
linear dependence on I is accounted for with an implicit
method to ensure stability.

The implementation of the low-frequency model is less
straightforward and deserves some comments. Its workings
are illustrated with a first-order explicit time-marching
scheme as follows:

�i� I and N are known at t0; n, �, and �iw are determined
at t0 by solving the quasisteady system for charged particles
�18�–�22� and �14�–�16�, and �I is simultaneously determined
by satisfying Eq. �23�;

�ii� the source term for neutrals is computed using the
quantities determined at step �i� and the value of I at t0;

�iii� N is advanced from t0 to t1= t0+dt using Eqs. �25�
and �26� with the source term computed at step �ii�;

�iv� I is advanced from t0 to t1 using the value �I
�d ln I /dt computed at step �i�; and
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�v� return to step �i� with the updated I and N.
Note, however, that a second-order predictor-corrector

time-marching scheme is actually used in simulations. The
quasisteady solution of step �i� is determined using the same
solver as the time-dependent model, applied to a time-
dependent generalization of Eqs. �19�–�22�. The convergence
to the quasisteady state is forced by a combination of under-
relaxation for the electron energy equation �aimed at damp-
ing transit-time oscillations� and proportional-integral con-
trol for Eq. �23�, whereas �I is the process variable and U is
the set point of the system.

For both models, the spatial domain is discretized into 81
nodes. The time step is adaptively determined so as to al-
ways satisfy the Courant-Friedrichs-Lewy condition �for
charged species in the case of the TD model and for neutrals
in the case of the LF model�.

APPENDIX C: ASYMPTOTIC LINEAR MODEL

Let us assume small harmonic perturbations of N and I
around the steady state,

N�x,t� = N̄�x� + N̂�x�exp�j�t� , �C1�

I�t� = Ī + Î exp�j�t� . �C2�

The model �28�–�30� can be subsequently linearized as

j�N̂ + V
dN̂

dx
= − S̄Î − Ī�S̄�j�

Î

Ī
+ SNN̂� , �C3�

ū�j�
Î

Ī
+ UNN̂ = 0, �C4�

N̂�0� = 0, �C5�

where S̄�S�0, N̄� is a function of x that corresponds to the

value of S in the steady state. S̄� is a function of x that arises
from the Fréchet differentiation of operator S with respect to
�I. Likewise, SN is a linear operator obtained by differentia-
tion of S with respect to N, ū� is a scalar that stands for the
derivative of U with respect to �I=d ln I /dt, and UN is a
linear functional obtained by differentiation of U with respect

to N. Defining operator K� ĪSN− ĪS̄�ū�
−1UN and functional

G�−ū�
−1UN, Eqs. �C3� and �C4� can be rewritten in the sim-

pler form

j�N̂ + V
�N̂

�x
= − �N̄

Î

Ī
− KN̂ , �C6�

j�
Î

Ī
= GN̂ , �C7�

where �� S̄Ī / N̄ simply stands for the steady-state effective
ionization frequency. Part of the mathematical abstraction
associated with the linear model can be lifted using the

Schwartz kernel representation for operator K and the Riesz
representation for functional G,

�KN̂��x� = 

0

�

k̄�x,x��N̂�x��dx�, �C8�

GN̂ = 

0

�


�x�
N̂�x�

N̄�x�
dx , �C9�

which carries the idea that K and G are merely weighting

functions for N̂ and specified in terms of uniquely defined

distributions k̄ and 
 / N̄.
Proceeding now to the nondimensionalization of the lin-

ear system, it appears reasonable to assume that a perturba-
tion of N will introduce relative perturbations on the order of

N̂ / N̄ on the quasisteady state of charged particles, meaning
in particular that

1

S̄
SNN̂ = O� N̂

N̄
	,

1

Ū
UNN̂ = O� N̂

N̄
	 . �C10�

In order to estimate the response of the quasisteady state of
charged particles to oscillations of I, let us observe that
electron-density conservation equation Dn /Dt= IS can be ex-
pressed in terms of the scaled plasma density n�n / I as

1

S

Dn

Dt
� 1 −

n

IS

1

I

dI

dt
, �C11�

where D /Dt stands for the convective derivative. Since the
left-hand side of Eq. �C11� is a function of S and n which are
both quasisteady quantities, the second term in the right-hand
side makes it apparent that small oscillations of I introduce

relative perturbations on the order of �n̄ / ĪS̄�� �j�Î / Ī� on the
quasisteady state variables for charged species, meaning in
particular that

ū�

Ū
= O� n̄

ĪS̄
	,

S̄�

S̄
= O� n̄

ĪS̄
	 . �C12�

Having in mind that ĪS̄=−VdN̄ /dx and making use of Eqs.
�C10� and �C12�, the following nondimensional quantities of
order unity are introduced:

x� �
x

�
,

���x�� =
�

V
��x� ,


��x�� �
�2n0

VN0

�x� ,

k̄��x�,x��� �
�2

V
k̄�x,x�� ,

where n0 and N0 are characteristic densities for the plasma
and for neutrals. The frequency and the state variables are

LOW-FREQUENCY MODEL OF BREATHING OSCILLATIONS… PHYSICAL REVIEW E 79, 046401 �2009�

046401-9



made nondimensional irrespective of their actual orders of
magnitude as follows:

�� �
�

V
� ,

N��x�� �
N�x�
N0

,

I� �
I

Ī
.

The linear breathing model is now expressed in a nondimen-
sional form,

j��N̂� +
�N̂�

�x�
= − ��N̄�Î� − K�N̂�, �C13�

j��Î� =
1

	



0

1


�
N̂�

N̄�
dx�, �C14�

N̂��0� = 0, �C15�

which highlights the presence of a small parameter

	 �
n0

N0
� 1. �C16�

Turning now to the solution of the linearized model, we shall
admit a priori the orderings Re�����1 and Im����=O�1�;
their consistency with the solution arrived at is eventually
verified. The exact solution of Eqs. �C13� and �C15� is of the
form

N̂��x�� = − 

0

x�

����x���N̄��x���Î� + �K�N̂���x����

�exp�j���x�� − x���dx��, �C17�

which can be integrated by parts as

N̂��x�� = jÎ���−1����x�N̄��x� − ���0�N̄��0�exp�− j��x���

+ j��−1��K�N̂���x�� − �K�N̂���0�exp�− j��x���

+ Î�O���−2� + N̂�O���−2� . �C18�

Remembering that k̄� is of order unity and assuming that it is
a sufficiently well-behaved function of x� and x��, it can be

stated that K�N̂� is of order N̂�. Therefore, N̂� is O�Î���−1� at
the leading order,

N̂��x�� = jÎ���−1����x�N̄��x� − ���0�N̄��0�exp�− j��x���

+ Î�O���−2� . �C19�

The perturbation of neutral density consists thus of a short-
wavelength oscillatory wave �term in exp�−j��x���, superim-
posed on a standing wave. Injecting Eq. �C19� into Eq. �C14�
and provided that 
� is a sufficiently well-behaved function
of x�, the integral of the short-wave oscillatory component
becomes a residual of order O���−1� and �� satisfies

��2 =
1

	



0

1

���x��
��x��dx� +
1

	
O���−1� + O�1� .

�C20�

Since �� and 
� are real-valued functions of order unity, the
above relation implies that Re�����	−1\2�1 and Im����
�O�1�, thus confirming the premises on which the approxi-

mation of N̂� was derived. A corollary of this analysis is that
operator K can be neglected in Eq. �C6� if only the leading-

order expansions of � and N̂ are sought.
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